Light-Actuated Digital Microfluidics for Large-Scale Droplet Manipulation

نویسندگان

  • Shao Ning Pei
  • Ming C. Wu
  • Michel Maharbiz
چکیده

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Abstract The ability to quickly perform a large number of chemical or biological reactions in parallel using low reagent volumes is a field well addressed by electrowetting-based digital microfluidics. Here we report on a new light-actuated digital microfluidics device which uses on-demand, 'virtual' electrodes defined by light patterns from a data projector for the large-scale, parallel manipulation of arbitrarily sized droplets. The device features a thin, high-quality aluminum oxide film deposited via atomic layer deposition (ALD), which allows aggressive scaling of the dielectric thickness while maintaining high device reliability. Due to the thin ALD dielectric layer, a significantly higher actuation force is imparted on droplets, which results in actuation speeds of up to 2 cm/s. Compared to our previous device, the actuation speed is 20x faster, but achieved at 250x lower optical power and 5x lower voltage. In this paper, we demonstrate the device's ability to perform all the critical digital microfluidics functionalities: transport, creation, merging, and splitting. In addition, the ability to easily achieve parallel manipulation and array formation (8 by 12, 96 droplet format) of droplets will be presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Light-Driven Droplet Manipulation Technologies for Lab-on-a-Chip Applications

Droplet-based (digital) microfluidics has been demonstrated in many lab-on-a-chip applications due to its free crosscontamination and no dispersion nature. Droplet manipulation mechanisms are versatile, and each has unique advantages and limitations. Recently, the idea of manipulating droplets with light beams either through optical forces or light-induced physical mechanisms has attracted some...

متن کامل

A light-induced dielectrophoretic droplet manipulation platform.

We report on a light-actuated, droplet based microfluidic platform enabling two-dimensional (2D) droplet manipulation on an open chamber with a single-side, featureless photoconductive surface. The droplet actuation mechanism is based on recently demonstrated floating electrode optoelectronic tweezers (FEOET), which enable light-induced dielectrophoretic forces to manipulate aqueous droplets im...

متن کامل

Abstract Submission Template

We introduce a droplet-jumping phenomenon on a superhydrophobic surface driven by the resonant AC electrowetting. The resonant electrical actuation enables a droplet to accumulate sufficient surface energy for jumping, and superhydrophobic surface minimizes adhesion and hysteresis effects. They provide the effective energy conversion from the surface energy to the kinetic energy and improve the...

متن کامل

Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns.

Electrowetting-on-dielectric (EWOD) promises to be an important lab-on-a-chip approach for effectively manipulating droplets with electric field-controlled surface tension. Droplets manipulated in electrowetting-based devices are typically sandwiched between two parallel plates and actuated by digital electrodes. The size of pixilated electrodes limits the minimum droplet size that can be manip...

متن کامل

Light Actuated Microfluidic Devices

A light-actuated microfluidic device has been successfully fabricated to inject, move, separate, and merge liquid droplets with nano-liter volumes. Light actuation is realized by sandwiching the liquid droplets between two photosensitive surfaces whose wettability can he changed by light. By integrating a photoconductor with an electrowetting electrode, the surface tension at the liquidsolid in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011